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Abstract. We investigate the existence, convergence and uniqueness of mod-

ified general curvature flow (MGCF) of convex hypersurfaces in hyperbolic
space with a prescribed asymptotic boundary.

1. Introduction

In this paper, we continue our study of modified curvature flow problems in hy-

perbolic space. Consider a complete (locally strictly) convex hypersurface in Hn+1

with a prescribed asymptotic boundary Γ at infinity, whose principal curvatures

satisfy f(κ) > σ, (e.g in our earlier work [LX10] section 8 we gave an example of

such ”good” initial surfaces.) and is given by an embedding X(0) : Ω → Hn+1,

where Ω ⊂ ∂∞Hn+1. We consider the evolution of such embedding to produce a

family of embeddings X : Ω× [0, T )→ Hn+1 satisfying the following equations

(1.1)


Ẋ = (f(κ[Σ(t)])− σ)νH (x, t) ∈ Ω× [0, T ),

X(0) = Σ0 (x, t) ∈ ∂Ω× {0},

X = Γ (x, t) ∈ ∂Ω× [0, T ),

where κ[Σ(t)] = (κ1, · · · , κn) denotes the hyperbolic principal curvatures of Σ(t),

σ ∈ (0, 1) is a constant and νH denotes the outward unit normal of Σ(t) with respect

to the hyperbolic metric.

In this paper, we shall use the half-space model,

Hn+1 = {(x, xn+1) ∈ Rn+1 : xn+1 > 0}

equipped with the hyperbolic metric

(1.2) ds2 =

∑n+1
i=1 dx

2
i

x2
n+1

.

One identifies the hyperplane {xn+1 = 0} = Rn × {0} ⊂ Rn+1 as infinity of Hn+1,

denoted by ∂∞Hn+1. For convenience we say Σ has compact asymptotic boundary

if ∂Σ ⊂ ∂∞Hn+1 is compact with respect to the Euclidean metric in Rn.
The function f is assumed to satisfy the following fundamental structure condi-

tions:

(1.3) fi(λ) ≡ ∂f(λ)

∂λi
> 0 in K, 1 ≤ i ≤ n,
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(1.4) f is a concave function in K,

and

(1.5) f > 0 in K, f = 0 on ∂K,

where K ⊂ Rn is an open symmetric convex cone defined as following

(1.6) K := K+
n := {λ ∈ Rn : each component λi > 0}.

In addition, we shall assume that f is normalized

(1.7) f(1, · · · , 1) = 1

and satisfies more technical assumptions

(1.8) f is homogeneous of degree one.

Moreover,

(1.9) lim
R→+∞

f(λ1, · · · , λn−1, λn +R) ≥ 1 + ε0 uniformly in Bδ0(1)

for some fixed ε0 > 0 and δ0 > 0, where Bδ0(1) is the ball of radius δ0 centered at

1 = (1, · · · , 1) ∈ Rn.
As shown in [GS10], an example of the function satisfies all assumptions above

is given by f = (Hn/Hl)
1
n−l , 0 ≤ l < n, defined in K, where Hl is the normalized

l − th elementary symmetric polynomial. (e.g., H0 = 1, H1 = H, Hn = K the

extrinsic Gauss curvature.)

Since f is symmetric, by (1.4), (1.7) and (1.8) we have

(1.10) f(λ) ≤ f(1) +
∑

fi(1)(λi − 1) =
∑

fi(1)λi =
1

n

∑
λi in K

and

(1.11)
∑

fi(λ) = f(λ) +
∑

fi(λ)(1− λi) ≥ f(1) = 1 in K.

In this paper, we always assume the initial surfaces Σ0 to be connected and

orientable, and Σ(t) = {X := (x, u(x, t)) | (x, t) ∈ Ω × [0, T ), xn+1 = u(x, t)} to

be the flow surfaces with X = (x, u(x, t)) satisfying the flow equation (1.1). If Σ

is a complete hypersurface in Hn+1 with compact asymptotic boundary at infinity,

then the normal vector field of Σ is always chosen to be the one pointing to the

unique unbounded region in Rn+1
+ /Σ, and both Euclidean and hyperbolic principal

curvature of Σ are calculated with respect to this normal vector field.

We shall take Γ = ∂Ω, where Ω ⊂ Rn is a smooth domain and seek a family

of hypersurfaces Σ(t) as a graph of function u(x, t) with boundary Γ. Then the

coordinate vector fields and upper unit normal are given by

Xi = ei + uien+1, νH = uν = u
(−uiei + en+1)

w
,

where through out this paper, w =
√

1 + |∇u|2, en+1 is the unit vector in the

positive xn+1 direction in Rn+1, νH denotes the hyperbolic unit normal, and ν

denotes the Euclidean unit normal.
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Note that by equation (1.1) 〈
Ẋ, νH

〉
H

= f − σ,

which is equivalent to 〈
∂

∂t
(x, u(x, t)), νH

〉
H

= f − σ,

from here we can derive that the height function u satisfies equation

(1.12) ut = (f − σ)uw.

So problem (1.1) then reduces to the Dirichlet problem for a fully nonlinear

second order parabolic equation

(1.13)


ut = uw(f − σ) on Ω× [0, T ) ,

u(x, 0) = u0 on Ω× {0} ,

u(x, t) = 0 on ∂Ω× [0, T ) .

In this paper, we shall focus on proving the long time existence of the modified

general curvature flow (MGCF) of complete embedded hypersurfaces with initial

surface whose principal curvatures satisfy f(κ) > σ everywhere; furthermore, we

shall also prove the uniqueness under additional assumptions.

To begin with, I’d like to state the following beautiful result of [GSZ09]

Theorem 1.1. Let Σ be a complete locally strictly convex C2 hypersurface in Hn+1

with compact asymptotic boundary at infinity. Then Σ is the vertical graph of a

function u ∈ C2(Ω) ∩ C0(Ω), u > 0 in Ω and u = 0 on ∂Ω, for some domain

Ω ⊂ Rn :

Σ = {(x, u) ∈ Rn+1
+ : x ∈ Ω}

such that

(1.14) {δij + uiuj + uuij} > 0 in Ω.

That is, the function u2 + |x|2 is strictly convex.

According to Theorem 1.1, our assumption that Σ(t) is a graph is completely

general and the asymptotic boundary Γ must be the boundary of some bounded

domain Ω in Rn.
We seek solution of equation (1.13) satisfying (1.14) for all t ∈ [0, T ). (We will

see in section 4 that when the initial surface of the MGCF under certain restriction

then the solution of (1.13) must satisfy (1.14).) Following the literature we call

such solutions admissible. By [CNS85] condition (1.3) implies that equation (1.13)

is parabolic for admissible solutions.

The main result of this paper may be stated as follows.

Theorem 1.2. Let Γ = ∂Ω×{0} ⊂ Rn+1 where Ω is a bounded smooth domain in

Rn. Suppose that σ ∈ (0, 1) and that f satisfies conditions (1.3)-(1.9) with K = K+
n .
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Furthermore, let Σ0 = {(x, u0(x)) | u0 ∈ C∞(Ω) ∩ C1+1(Ω)} be a complete locally

strictly convex hypersurface with ∂Σ0 = Γ and f(κ[Σ0]) greater than σ, then there

exists a solution Σ(t), t ∈ [0,∞), to the MGCF (1.1) with uniformly bounded

principal curvatures

(1.15) |κ[Σ(t)]| ≤ C on Σ(t), for all t ∈ [0,∞).

Moreover, Σ(t) = {(x, u(x, t)) | (x, t) ∈ Ω × [0,∞)} is the flow surface of an

admissible solution u(x, t) ∈ C∞(Ω× (0,∞)) ∩W 2,1
p (Ω× [0,∞)) 1 of the Dirichlet

problem (1.13), where p > 4. Furthermore, for any fixed t > 0, we have u2(x, t) ∈
C∞(Ω) ∩ C1+1(Ω) and

(1.16) u|D2u| ≤ C in Ω,

(1.17)
√

1 + |Du|2 ≤ C in Ω,

where C is some constant independent of t. In addition, if

(1.18)
∑

fi >
∑

λ2
i fi in K ∩ {0 < f < 1},

then as t → ∞, u(t) converges uniformly to a function ũ ∈ C∞(Ω) ∩ C1(Ω), such

that Σ∞ = {(x, ũ) ∈ Rn+1, x ∈ Ω} is a unique complete locally strictly convex

surface satisfies f(κ[Σ∞]) = σ in Hn+1.

Due to the degeneracy of equation (1.13) when u = 0, it is very natural to

consider the approximate modified general curvature flow (AMGCF) problem.

Instead of u = 0 on ∂Ω one assumes u = ε on ∂Ω, ε is small enough. So the

equations become,

(1.19)


ut = uw(f − σ) on Ω× [0, T ),

u(x, 0) = uε0 on Ω× {0},

u(x, t) = ε on ∂Ω× [0, T ).

where uε0 = u0 + ε and Σε0 = {(x, uε0)|x ∈ Ω} satisfies f(κ[Σε0]) > σ, ∀x ∈ Ω.

Theorem 1.3. Let Ω be a bounded smooth domain in Rn and σ ∈ (0, 1). Suppose

f satisfies (1.3)-(1.9) with K = K+
n . Then for any ε > 0 sufficiently small, there

exists an admissible solution uε ∈ C∞(Ω× (0,∞)) of the Dirichlet Problem (1.19).

Moreover, uε satisfies the a priori estimates

(1.20)
√

1 + |Duε|2 ≤ 1

σ
+ Cε, uε|D2uε| ≤ C on ∂Ω× [0,∞),

and

(1.21) uε|D2uε| ≤ C(t, ε) in Ω× [0,∞).

1W 2,1
p is the space of function f such that the norms

‖f‖
w

2,1
p

= ‖f‖Lp +

∥∥∥∥∂f∂t
∥∥∥∥
Lp

+
n∑

i=1

∥∥∥∥ ∂f

∂xi

∥∥∥∥
Lp

+
n∑

i,j=1

∥∥∥∥ ∂2f

∂xi∂xj

∥∥∥∥
Lp

are finite.
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In particular, C(t, ε) depends exponentially on time t.

Remark 1.4. The a priori estimates (1.20) will be proved in section 5 and 6, while

estimate (1.21) can be proved by combining Lemma 7.2 and equation (7.12) then

use standard maximum principle for parabolic equation.

The main technical difficulty in proving Theorem 1.2 is that we can not use

the estimates (1.21) to pass to the limit. We overcome this difficulty by proving a

maximum principle for the largest hyperbolic principal curvature.

Theorem 1.5. Let Ω be a bounded smooth domain in Rn and σ ∈ (0, 1). Suppose

f satisfies (1.3)-(1.9) with K = K+
n . Then for any admissible solution uε of the

Dirichlet problem (1.19),

(1.22) uε|D2uε| ≤ C(1 + max
∂Ω×[0,∞)

uε|D2uε|) in Ω× [0,∞),

where C is independent of ε and t.

By applying Theorem 1.5 to Theorem 1.3, one can see that the hyperbolic cur-

vatures of the admissible solution uε are uniformly bounded from above. Later we

will also show that, if our initial surface satisfies f(κ[Σ0]) > σ then f > σ during

the flow process. In particular,

Theorem 1.6. Suppose f satisfies (1.3)-(1.9) with K = K+
n , and uε(x, t) is an

admissible solution of the Dirichlet problem (1.19), and in addition

(1.23) f(κ[Σε0]) > σ.

Then we have

(1.24) f(κ[Σε(t)]) > σ ∀t ∈ [0, T ).

Thus one can conclude that the hyperbolic curvatures admit a uniform positive

lower bound, so by the interior estimates of Evans and Krylov, we obtain a uniform

C2,α estimates for any compact subdomain of Ω. Then the proof of Theorem 1.2

becomes routine.

The paper is organized as follows. In section 2 we establish some basic identities

for hypersurfaces in Hn+1. Section 3 contains some essential identities and evolution

equations which will be used later. The preserving of convexity will be proved in

section 4. Section 5 contains a global gradient estimate, while in sections 6 and 7 we

prove the boundary and global estimates for the second derivative of u respectively.

Finally in sections 8 and 9, we discuss the convergence and uniqueness of the MGCF.

2. Formulas for hyperbolic principal curvatures

2.1. Formulas on hypersurfaces. We will compare the induced hyperbolic and

Euclidean metrics and derive some basic identities on a hypersurface.
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Let Σ be a hypersurface in Hn+1. We shall use g, and ∇ to denote the induced

hyperbolic metric and Levi-Civita connections on Σ, respectively. Since Σ also

can be viewed as a submanifold of Rn+1, we shall usually distinguish a geodesic

quantity with respect to Euclidean metric by adding a ’tilde’ over the corresponding

hyperbolic quantity. For instance, g̃ denotes the induced metric on Σ from Rn+1,

and ∇̃ is its Levi-Civita connection.

Let (z1, · · · , zn) be local coordinates and

τi =
∂

∂zi
, i = 1, · · · , n.

The hyperbolic and Euclidean metrics of Σ are given by

(2.1) gij = 〈τi, τj〉H , g̃ij = τi · τj = u2gij ,

while the second fundamental forms are

(2.2)
hij = 〈Dτiτj , νH〉H = −〈DτiνH , τj〉H ,

h̃ij = ν · D̃τiτj = −τj · D̃τiν,

where D and D̃ denote the Levi-Civita connection of Hn+1 and Rn+1, respectively.

The following relations are well known (see equation(1.5),(1.6) of [GS08] ):

(2.3) hij =
1

u
h̃ij +

νn+1

u2
g̃ij .

(2.4) κi = uκ̃i + νn+1, i = 1, · · · , n,

where νn+1 = ν · en+1 = 1
w .

The Christoffel symbols are related by formula

(2.5) Γkij = Γ̃kij −
1

u
(uiδkj + ujδik − g̃klulg̃ij).

It follows that for v ∈ C2(Σ)

(2.6) ∇ijv = vij − Γkijvk = ∇̃ijv +
1

u
(uivj + ujvi − g̃klukvlg̃ij)

where and in the sequel (if no additional explanation)

vi =
∂v

∂xi
, vij =

∂2v

∂xi∂xj
, etc.

In particular,

(2.7) ∇iju = ∇̃iju+
2uiuj
u
− 1

u
g̃klukulg̃ij .

Moreover in Rn+1,

(2.8) g̃klukul = |∇̃u|2 = 1− (νn+1)2

(2.9) ∇̃iju = h̃ijν
n+1.

We note that all formulas above still hold for general local frame τ1, · · · , τn. In

particular, if τ1, · · · , τn are orthonormal in the hyperbolic metric, then gij = δij

and g̃ij = u2δij .
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We now consider equation (1.1) on Σ. For K as in section 1, let A be the vector

space of n× n matrices and

AK = {A = {aij} ∈ A : λ(A) ∈ K} ,

where λ(A) = (λ1, · · · , λn) denotes the eigenvalues of A. Let F be the function

defined by

(2.10) F (A) = f(λ(A)), A ∈ AK

and denote

(2.11) F ij(A) =
∂F

∂aij
(A), F ij,kl(A) =

∂2F

∂aij∂akl
(A).

Since F (A) depends only on the eigenvalues of A, if A is symmetric then so is the

matrix
{
F ij(A)

}
. Moreover,

F ij(A) = fiδij

when A is diagonal, and

(2.12) F ij(A)aij =
∑

fi(λ(A))λi = F (A),

(2.13) F ij(A)aikajk =
∑

fi(λ(A))λ2
i .

Equation (1.13) can therefore be rewritten in a local frame τ1, · · · , τn in the form

(2.14)


ut = uw(F (A[Σ])− σ) (x, t) ∈ Ω× [0, T ),

u(x, 0) = u0 (x, t) ∈ Ω× {0},

u(x, t) = 0 (x, t) ∈ ∂Ω× [0, T ),

where A[Σ] =
{
gikhkj

}
.

2.2. Vertical graphs. Suppose Σ is locally represented as the graph of a function

u ∈ C2(Ω), u > 0, in a domain Ω ⊂ Rn :

Σ = {(x, u(x)) ∈ Rn+1 : x ∈ Ω}.

In this case we take ν to be the upward (Euclidean) unit normal vector field to Σ :

ν =

(
−Du
w
,

1

w

)
, w =

√
1 + |Du|2.

The Euclidean metric and second fundamental form of Σ are given respectively by

g̃ij = δij + uiuj ,

and

h̃ij =
uij
w
.

According to [CNS86], the Euclidean principal curvature κ̃[Σ] are the eigenvalues

of symmetric matrix Ã[u] = [ãij ] :

(2.15) ãij :=
1

w
γikuklγ

lj ,
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where

γij = δij −
uiuj

w(1 + w)
.

Note that the matrix {γij} is invertible with the inverse

γij = δij +
uiuj

1 + w

which is the square root of {g̃ij}, i.e., γikγkj = g̃ij . From (2.4) we see that the

hyperbolic principal curvatures κ[u] of Σ are eigenvalues of the matrix A[u] =

{aij [u]} :

(2.16) aij :=
1

w

(
δij + uγikuklγ

lj
)
.

When Σ is a vertical graph we can also define F (A[Σ]) = F (A[u]).

3. Short time existence and Evolution equations

3.1. Short time existence. In order to prove a global existence for the Dirichlet

problem (1.19), we need to start with a short time existence theorem. Though this

theorem is standard, for completeness we state it as follows:

Theorem 3.1. Let G(D2u,Du, u) be a nonlinear operator, which is smooth with

respect to u,Du and D2u. Suppose that G is defined for function u belonging to an

open set Λ ⊂ C2(Ω) and G is elliptic for any u ∈ Λ, i.e., Gij > 0. Then the initial

value problem

(3.1)


ut = G(D2u,Du, u) on Ω× [0, T ),

u(x, 0) = u0 on Ω× {0},

u(x, t) = u0|∂Ω on ∂Ω× [0, T ),

has a unique solution u for T = ε > 0 small enough. Furthermore, u is smooth

except for the corner, when u0 ∈ Λ is of class C∞(Ω).

3.2. Evolution equations for some geometric quantities. In this subsection,

we will compute the evolution equations for some affine geometric quantities. Before

we start, need to point out that in this section for v ∈ C2(Σ), we denote vi = ∇̃iv,
vij = ∇̃ijv, etc.

Lemma 3.2. (Evolution of the metrics). The metric gij and g̃ij of Σ(t) satisfies

the evolution equations

(3.2) ġij = −2u−2g̃ij(F − σ)w − 2u−1(F − σ)h̃ij ,

and

(3.3) ˙̃gij = −2(F − σ)uh̃ij .
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Proof. Since g̃ij = τi · τj ,
∂

∂t
g̃ij = 2

〈
D̃τiẊ, D̃τjX

〉
= 2

〈
D̃τi [(F − σ)uν], τj

〉
= 2(F − σ)u

〈
D̃τiν, τj

〉
= −2(F − σ)uh̃ij .

Differentiating equation (2.1) with respect to t we get

∂

∂t
gij = −2u−3g̃ijut + u−2 ˙̃gij

= −2u−3g̃ij(F − σ)uw − 2u−2(F − σ)uh̃ij

= −2u−2g̃ij(F − σ)w − 2u−1(F − σ)h̃ij .

�

Lemma 3.3. (Evolution of the normal). The normal vector evolves according to

(3.4) ν̇ = −g̃ij [(F − σ)u]iτj ,

moreover,

(3.5) ν̇n+1 = −g̃ij [(F − σ)u]iuj .

Proof. Since ν is the unit normal vector of Σ, we have ν̇ ∈ T (Σ). Furthermore,

differentiating

〈ν, τi〉 =
〈
ν, D̃τiX

〉
= 0,

with respect to t we deduce

〈ν̇, τi〉 = −
〈
ν, D̃τi [(F − σ)uν]

〉
= −〈ν, [(F − σ)u]iν〉

= −[(F − σ)u]i,

so we have

ν̇ = −g̃ij [(F − σ)u]iτj .

Thus (3.5) follows directly from

ν̇n+1 = 〈ν̇, en+1〉 and uj = τj · en+1.

�

Lemma 3.4. (Evolution of the second fundamental form). The second fundamental

form evolves according to

(3.6)
˙̃
hli = [(F − σ)u]li + u(F − σ)h̃ki h̃

l
k,

(3.7)
˙̃
hij = [(F − σ)u]ij − u(F − σ)h̃ki h̃kj ,
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and

(3.8)
ḣij =

1

u
{[(F − σ)u]ij − u(F − σ)h̃ki h̃kj} −

h̃ij
u
w(F − σ)

− {g̃kl[u(F − σ)]kul}
g̃ij
u2
− 2

(F − σ)νn+1

u
h̃ij − 2

g̃ij
u2

(F − σ).

Proof. Differentiating (3.4) with respect to τi we get

∂

∂t
νi = −g̃kl[(F − σ)u]kiτl − g̃kl[(F − σ)u]kD̃τiτl.

On the other hand, in view of the Weingarten Equation

νi = −g̃klh̃liτk ⇒ ν̇i = − ˙̃
hki τk − h̃ki D̃τkẊ,

where h̃ki = g̃klh̃li is a mixed tensor, multiply by τj we get

− ˙̃
hki g̃kj − h̃ki

〈
D̃τkẊ, τj

〉
= −g̃kl[(F − σ)u]kig̃lj .

Therefore

˙̃
hki g̃kj = g̃kl[(F − σ)u]kig̃lj − h̃ki u(F − σ)

〈
D̃τkν, τj

〉
= [(F − σ)u]ij + u(F − σ)h̃ki h̃kj .

Multiplying the resulting equation with g̃jl

(3.9)
˙̃
hli = [(F − σ)u]li + u(F − σ)h̃ki h̃

l
k.

Moreover, since h̃ij = h̃lig̃lj , differentiating it with respect to t and use equation

(3.3) get

˙̃
hij =

˙̃
hlig̃lj + h̃li ˙̃glj

= [(F − σ)u]lig̃lj + u(F − σ)h̃ki h̃
l
kg̃lj + h̃li[−2(F − σ)uh̃lj ]

= [(F − σ)u]ij − u(F − σ)h̃ki h̃kj .

Finally by differentiating equation (2.3) with respect to t, we have

(3.10)

∂

∂t
hij =

1

u
˙̃
hij −

h̃ij
u2
ut +

g̃ij
u2
ν̇n+1 +

νn+1

u2
˙̃gij − 2

νn+1g̃ij
u3

ut

=
1

u
{[(F − σ)u]ij − u(F − σ)h̃ki h̃kj} −

h̃ij
u
w(F − σ)

+
g̃ij
u2
{−g̃kl[u(F − σ)]kul}+

νn+1

u2
[−2(F − σ)uh̃ij ]− 2

νn+1g̃ij
u3

uw(F − σ)

=
1

u
{[(F − σ)u]ij − u(F − σ)h̃ki h̃kj} −

h̃ij
u
w(F − σ)

− {g̃kl[u(F − σ)]kul}
g̃ij
u2
− 2

(F − σ)νn+1

u
h̃ij − 2

g̃ij
u2

(F − σ).

�
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Lemma 3.5. (Evolution of F) The term F evolves according to the equation

(3.11)
Ft = uF ij [(F − σ)u]ji + (F − σ)

[∑
fsκ

2
s − 2νn+1F + (νn+1)2

∑
fs

]
+ w(F − σ)

(
F − νn+1

∑
fs

)
− [(F − σ)u]iu

i
∑

fs.

Proof. We consider F with respect to the mixed tensor hji . By equation (3.5) and

(3.6) we have

(3.12)

Ft = F ij(hji )t = F ij
(
uh̃ji + νn+1δij

)
t

= uF ij [(F − σ)u]ji + u2(F − σ)F ij h̃ki h̃
j
k

+ uw(F − σ)F ij h̃ji − [(F − σ)u]iu
i
∑

fs

= uF ij [(F − σ)u]ji + (F − σ)
[∑

fsκ
2
s − 2νn+1F + (νn+1)2

∑
fs

]
+ w(F − σ)(F − νn+1

∑
fs)− [(F − σ)u]iu

i
∑

fs.

�

4. Preserving convexity

Let u be an admissible solution of (1.19) on the domain Ω×[0, T ). In this section,

we are going to prove that if the initial surface is convex and satisfying f(κ[Σ0]) > σ,

then during the evolution, the graph Σ(t) = (x, u(x, t)) stays convex and satisfies

f(κ[Σ(t)]) > σ, for any t ∈ [0, T ). For convenient, from now on we always choose

τ1, · · · , τn to be orthonormal in hyperbolic metrics, i.e., gij = δij and g̃ij = u2δij .

Lemma 4.1. If the initial surface Σ0 is convex and satisfies f(Σ0) > σ, then

for any t ∈ [0, T ), the flow surface Σ(t) stays convex. In particular, f(Σ(t)) >

σ, ∀(x, t) ∈ Ω× (0, T ).

Proof. By assumption (1.5) we can see that the convexity preserving property fol-

lows directly from f(Σ(t)) > σ, (x, t) ∈ Ω × (0, t). Therefore, in the following we

only need to show that if f(Σ0) > σ, then f(Σ(t)) > σ, ∀(x, t) ∈ Ω× (0, t).

First, instead of showing strict inequality, we will show f(Σ(t)) ≥ σ, ∀(x, t) ∈
Ω× (0, t). Combining equation (2.6) and Lemma 3.5 we have

(4.1)

∂F

∂t
− F ij∇ijF

= (F − σ)
[∑

fsκ
2
s − νn+1F + (νn+1)2

∑
fs + wF − 2

∑
fs

]
.

Consider function F̃ = e−λt(F − σ), where λ > 0 to be determined later. By

equation (4.1) we know that F̃ satisfies

(4.2)

∂F̃

∂t
− F ij∇ijF̃

= F̃
[∑

fsκ
2
s − νn+1F + (νn+1)2

∑
fs + wF − 2

∑
fs − λ

]
.
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If F̃ achieves its negative minimum at an interior point (x0, t0) ∈ ΩT = Ω× (0, T ),

then at this point we would have

0 ≥ F̃
[∑

fsκ
2
s − νn+1F + (νn+1)2

∑
fs + wF − 2

∑
fs − λ

]
.

Choosing λ > maxΩ×[0,T∗]

∣∣fsκ2
s − νn+1F + (νn+1)2

∑
fs + wF − 2

∑
fs
∣∣, where

0 < t0 < T ∗ < T, leads to a contradiction.

Now we are ready to show the strict inequality. Under the hypothesis f(Σ0) > σ,

assume t0 ∈ [0, T ) is the first time such that F (Σ(x0, t0)) = σ, (x0, t0) ∈ Ω× (0, T ).

Let F̃ ε = e−λt(F − σ)− εe−λt, where 0 < ε < infx∈Ω{f(Σ0(x))− σ} small enough

such that F̃ ε(Σ(x′, t′)) is a local minimum and t0 − t′ is very small. Then at the

point (x′, t′) we would have

0 ≥ ∂F̃ ε

∂t
− F ij∇ijF̃ ε > e−λt

′
ελ
(

2e−λ(t0−t′) − 1
)
> 0,

which leads to a contradiction. �

Similarly we have

Corollary 4.2. Let Σ(t) = {(x, u(x, t)), (x, t) ∈ Ω× [0, T )} denote the flow surface,

f(Σ0) > σ, and u satisfies equation (1.12), then there exists a constant C only

depends on u0, such that

(4.3) F − σ ≤ Ceλ(T∗)t ∀t ∈ [0, T ∗), 0 < T ∗ < T.

Proof. We still consider the function F̃ = e−λt(F − σ) in Ω× [0, T ∗), 0 < T ∗ < T

where λ chosen in the same way as before, then by Lemma 4.1 we have

∂F̃

∂t
− F ij∇ijF̃ < 0 in Ω× [0, T ∗).

Now we apply maximum principle and conclude that F̃ achieves its maximum at

the parabolic boundary. By Theorem 3.1 we know that F ≡ σ on ∂Ω × (0, T ),

therefore let C = maxx∈Ω F (Σ0(x))− σ, we get (4.3). �

Remark 4.3. From Corollary 4.2, we can see that for any fixed 0 < T ∗ < T, there

exists a constant C only depends on initial surface Σ0 and T ∗, such that for any

0 ≤ t ≤ T ∗, we have F < C.

5. Gradient estimates

In this section we shall show that for t ∈ (0, T ) an upward unit normal of the

solution tends to a fixed asymptotic angle with our axis en+1 on approaching to the

boundary. Combining this with following results gives us a global gradient bound

for the solution.

The following lemma is similar to Theorem 3.1 of [GS10].
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Lemma 5.1. Let Σ(t) = {(x, u(x, t)) : (x, t) ∈ ΩT } be the flow surfaces with u(x, t)

is an admissible solution of equation (1.19). Then for ε > 0 sufficiently small,

(5.1)
σ − νn+1

u
<

√
1− σ2

r1
+
ε(1 + σ)

r2
1

on ∂Ω× (0, T ),

where r1 is the maximal radius of exterior tangent sphere to ∂Ω.

Proof. We first assume r1 <∞. Let Γε denote the vertical ε-lift of boundary Γ, for

a fixed point x0 ∈ Γε, let e1 be the outward unit normal vector to Γε at x0. Let B1

be a ball in Rn+1 of radius R1 centered at a = (x0 + r1e1, R1σ) where R1 satisfies

R2
1 = r2

1 + (R1σ − ε)2.

Note that B1 ∩ P (ε) = {x ∈ Rn+1|xn+1 = ε} is an n-ball of radius r1, which

externally tangent to Γε. By Lemma 3.3 of [LX10], we know that B1 ∩ Σ(t) = ∅,
for any t ∈ [0, T ) hence at x0, we have

νn+1 > −u− σR1

R1
.

By an easy computation we can get

R1 ≥
r2
1√

(1− σ2)r2
1 + (1 + σ)ε

thus equation (5.1) is proved. If r1 = ∞, then in the above argument one can

replace r1 by any r > 0 and then let r →∞. �

Proposition 5.2. Let Σ(t) be the flow surfaces, where Σ(t) = {(x, u(x, t)) : (x, t) ∈
ΩT } and u(x, t) satisfies the AMGCF equation (1.19). Then

(5.2)
1

νn+1
≤ max

{
maxΩT u

u
,max
∂ΩT

1

νn+1

}
,

where ΩT = Ω× [0, T ).

Proof. Let h = uw and suppose that h obtains its maximum at an interior point

(x0, t0), then at this point we have

∂ih = (δki + ukui + uuki)
uk
w

= 0, for ∀ 0 ≤ i ≤ n.

By Lemma 4.1 we know that Σ(t0) is strictly locally convex. According to Theorem

1.1, this implies that ∇u = 0 at (x0, t0), thus the conclusion follows immediately.

�

Now we can apply equation (2.5) and (2.6) to prove the following theorem.

Theorem 5.3. Consider the flow surfaces Σ(t), where Σ(t) is supposed to be glob-

ally a graph:

Σ(t) = {(x, u(x, t)) : (x, t) ∈ ΩT }
and u(x, t) satisfies the AMGCF equation (1.19), then we have

(5.3)
σ − νn+1

u
≤ max

{
σ − 1

3σ

u
,max
∂ΩT

σ − νn+1

u

}
.



14 LING XIAO

Proof. By equation (2.3), (2.5) and let g̃ij = u2δij

(5.4)

∇ij
1

u
= − 1

u2
∇̃iju+

1

u3
g̃klukulg̃ij

= − 1

u2
h̃ijν

n+1 +
1

u3
g̃klukulg̃ij

= −ν
n+1

u

(
hij −

νn+1

u2
g̃ij

)
+

1

u3
g̃klukulg̃ij

hence,

(5.5)

F ij∇ij
1

u
= −ν

n+1

u
F +

(νn+1)2

u3

∑
F ij g̃ij +

1

u3
uku

k
∑

F ij g̃ij

= −ν
n+1

u
F +

(νn+1)2

u

∑
fk +

1− (νn+1)2

u

∑
fk

= −ν
n+1

u
F +

1

u

∑
fk.

Moreover,

(5.6) ∇ij
νn+1

u
= νn+1∇ij

1

u
+

1

u
∇̃ijνn+1 − 1

u2
g̃kluk(νn+1)lg̃ij .

We recall the identities in Rn+1

(5.7)
(
νn+1

)
i

= −h̃ij g̃jkuk

(5.8) ∇̃ijνn+1 = −g̃kl
(
νn+1h̃ilh̃kj + ul∇̃kh̃ij

)
.

By equation (5.5), (5.6) and (5.8) we see that

(5.9)

F ij∇ij
νn+1

u

= νn+1F ij∇ij
1

u
+

1

u
F ij∇̃ijνn+1 − 1

u2
g̃kluk(νn+1)lF

ij g̃ij

= − (νn+1)2

u
F +

νn+1

u

∑
fk +

1

u
F ij

[
−g̃kl(νn+1h̃ilh̃kj + ul∇̃kh̃ij)

]
− 1

u2
g̃kluk(νn+1)lF

ij g̃ij .

As a hypersurface in Rn+1, it follows from equation (2.4) that for any 0 ≤ t < T,

Σ(t) satisfies

(5.10) f
(
uκ̃1 + νn+1, · · · , uκ̃n + νn+1

)
= F

or equivalently,

(5.11) F
({
ug̃skh̃kr + νn+1δsr

})
= F.

Differentiating equation (5.11) and using g̃sr = δsr
u2 we obtain

(5.12) Fi =
ui
u
F − ui

u
νn+1

∑
fk +

1

u
F sr∇̃ih̃sr +

(
νn+1

)
i

∑
fk.
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Combining lemma 3.3 and equation (5.12) we derive

(5.13)

(
νn+1

u

)
t

=
νn+1
t

u
− νn+1

u2
ut

=
1

u

{
−g̃ij [(F − σ)u]iuj

}
− νn+1

u2
ut

= −g̃ijFiuj −
(F − σ)

u
g̃ijuiuj −

(F − σ)

u

= −ui
(
ui
u
F − ui

u
νn+1

∑
fk +

1

u
F st∇̃ih̃st + (νn+1)i

∑
fk

)
− (F − σ)

u
g̃ijuiuj −

(F − σ)

u

= −|∇̃u|
2

u
F +

|∇̃u|2

u
νn+1

∑
fk −

ui

u
F st∇̃ih̃st − ui(νn+1)i

∑
fk

− (F − σ)

u
(|∇̃u|2 + 1).

Finally we get

(5.14)

(
∂

∂t
− F ij∇ij

)
νn+1

u

= −|∇̃u|
2

u
F +

|∇̃u|2

u
νn+1

∑
fk −

ui

u
F st∇̃ih̃st

− ui(νn+1)i
∑

fk −
(F − σ)

u
(|∇̃u|2 + 1) +

(νn+1)2

u
F − νn+1

u

∑
fk

− 1

u
F ij

[
−g̃kl(νn+1h̃ilh̃kj + ul∇̃kh̃ij)

]
+

1

u2
g̃kluk(νn+1)lF

ij g̃ij

= −|∇̃u|
2

u
F +

νn+1 − (νn+1)3

u

∑
fk −

(F − σ)

u
(|∇̃u|2 + 1)

+
(νn+1)2

u
F − νn+1

u

∑
fk +

1

u
F ij g̃klνn+1h̃ilh̃kj

= − 1

u
F − (F − σ)

u
(|∇̃u|2 + 1) +

νn+1

u

∑
fkκ

2
k.

By a simple computation we have

(5.15)

(
∂

∂t
− F ij∇ij

)
1

u
= − (F − σ)

uνn+1
+
νn+1

u
F − 1

u

∑
fk.
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Therefore,

(5.16)

(
∂

∂t
− F ij∇ij

)
σ − νn+1

u

= −σ(F − σ)

uνn+1
+
σνn+1

u
F − σ

u

∑
fk +

1

u
F

+
(F − σ)

u
(2− (νn+1)2)− νn+1

u

∑
fkκ

2
k

≤ 1

u
(F − σ

∑
fk) +

(F − σ)

u

(
2− (νn+1)2 − σ

νn+1

)
+
νn+1

u

(
σF − F 2∑

fk

)
=

1

u
(F − σ

∑
fk)

(
1− νn+1F∑

fk

)
+

(F − σ)

u

(
2− (νn+1)2 − σ

νn+1

)
where we applied inequality

∑
fkκ

2
k ≥ F 2∑

fk
. If σ−ν

n+1

u achieves its maximum at an

interior point (x0, t0), then at this point we have

(5.17)

0 ≤ 1

u
(F − σ

∑
fk)

(
1− νn+1F∑

fk

)
+

(F − σ)

u

(
2− (νn+1)2 − σ

νn+1

)
=
F − σ
u

(
2− (νn+1)2 − σ

νn+1
+
F − σ

∑
fk

(F − σ)
− νn+1F∑

fk

(F − σ
∑
fk)

(F − σ)

)
.

when F ≥ σ
∑
fk

0 ≤ (F − σ)

u

(
3− σ

νn+1

)
,

when F < σ
∑
fk

0 ≤ (F − σ)

u

(
2− σ

νn+1

)
.

Thus by Lemma 4.1 we have when νn+1 < σ
3 at (x0, t0),(

∂

∂t
− F ij∇ij

)
σ − νn+1

u
< 0,

which leads to a contradiction.

Therefore we conclude that

σ − νn+1

u
≤ max

{
σ − 1

3σ

u
,max
∂ΩT

σ − νn+1

u

}
.

�

Combining Lemma 5.1, Proposition 5.2 and Theorem 5.3 gives

Corollary 5.4. For any ε > 0 sufficiently small, any admissible solution uε of the

Dirichlet problem (1.19) satisfies the a priori estimates

(5.18) |∇uε| ≤ C in ΩT ,

where C is independent of ε and T.
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6. C2 boundary estimates

In this section, we will establish boundary estimates for second order spatial

derivatives of the admissible solutions to the Dirichlet problem (1.19). Following

the notations in subsection 2.2 we can rewrite equation (1.19) as follows:

(6.1)


1

uw
ut − F

(
1

w
(δij + uγikuklγ

lj)

)
= −σ on ΩT ,

u(x, 0) = uε0 on Ω× {0},

u(x, t) = ε on ∂Ω× [0, T ).

And from now on we denote

(6.2) G(D2u,Du, u, ut) =
1

uw
ut − F.

Theorem 6.1. Suppose f satisfies equation (1.3)-(1.9). If ε is sufficiently small,

(6.3) u|D2u| ≤ C on ∂Ω× [0, T ),

where C is independent of ε.

Remark 6.2. The following proof shows that C does not depend on ε, but depends

on T . In section 7 we will show that in fact C is also independent of T.

Note that

(6.4) Gkl :=
∂G

∂ukl
= − u

w
F ijγikγlj ,

(6.5) Gklukl = −F +
1

w

∑
F ii,

(6.6)

Gu :=
∂G

∂u
= − 1

wu2
ut −

1

w
F ijγikuklγ

lj

= − (F − σ)

u
− F ij

(
aij
u
− 1

uw
δij

)
= −2F

u
+
σ

u
+

1

wu

∑
F ii,

(6.7) Gt :=
∂G

∂ut
=

1

uw
,

(6.8)

Gs :=
∂G

∂us

= −utus
uw3

+
us
w2

F +
2

w
F ijaik

(
wukγ

sj + ujγ
ks

1 + w

)
− 2

w2
F ijuiγ

sj

= − (F − σ)

w2
us +

us
w2

F +
2

w
F ijaik

(
wukγ

sj + ujγ
ks

1 + w

)
− 2

w2
F ijuiγ

sj

=
us
w2

σ +
2

w
F ijaik

(
wukγ

sj + ujγ
ks

1 + w

)
− 2

w2
F ijuiγ

sj .
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Thus

(6.9) Gsus =
w2 − 1

w2
σ +

2

w2
F ijaikukuj −

2

w3
F ijuiuj .

And similar to equation (5.4) in [GS08] we have

(6.10)
∑
|Gs| ≤ C(

∑
F ii + F ).

Next, we consider the partial linearized operator of G at u:

L = Gt∂t +Gkl∂k∂l +Gs∂s.

By equation (6.5),(6.7) and (6.9) we get

(6.11)
Lu =

1

uw
ut − F +

1

w

∑
F ii +

w2 − 1

w2
σ +

2

w2
F ijaikukuj −

2

w3
F ijuiuj

= − 1

w2
σ +

1

w

∑
F ii +

2

w2
F ijaikukuj −

2

w3
F ijuiuj ,

hence

(6.12)

L

(
1

u

)
= − 1

u2
Lu+

2

u3
Gklukul

=
1

u2w2
σ − 1

u2w

∑
F ii − 2

u2w2
F ijaikukuj

+
2

w3u2
F ijuiuj −

2

u2w
F ijγisusγ

rjur

=
1

w2u2
σ − 1

wu2

∑
F ii − 2

w2u2
F ijaikukuj .

Lemma 6.3. Suppose that f satisfies equation (1.3), (1.4), (1.7) and (1.8). Then

(6.13) L
(

1− ε

u

)
≥ ε(1− σ)

wu2

∑
F ii in ΩT .

Proof. Since {F ij} and {aij} are both positive definite and can be diagonalized

simultaneously, we see that

(6.14) F ijaikξkξj ≥ 0, ∀ξ ∈ Rn.

Combining with equation (6.12)

(6.15)

L
(

1− ε

u

)
= −εL

(
1

u

)
=
−ε
u2w2

σ +
ε

u2w

∑
F ii +

2ε

w2u2
F ijaikukuj

≥
ε
(
1− σ

w

)
wu2

∑
F ii ≥ ε(1− σ)

u2w

∑
F ii.

�

Now we denote L = Gt∂t+Gkl∂k∂l +Gs∂s +Gu, similar to [CNS84] we have

Lemma 6.4. Suppose that f satisfies equation (1.3), (1.4), (1.7) and (1.8). Then

(6.16) L(xiuj − xjui) = 0, L(ui) = 0, 1 ≤ i, j ≤ n.
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Proof of Theorem 6.1. Consider an arbitrary point on ∂Ω, which we may assume

to be the origin of Rn and choose the coordinates so that the positive xn axis is

the interior normal to ∂Ω at the origin. There exists a uniform constant r > 0 such

that ∂Ω ∩Br(0) can be represented as a graph

xn = ρ(x′) =
1

2

∑
α,β<n

Bαβxαxβ +O(|x′|3), x′ = (x1, · · · , xn−1).

Since u ≡ ε, on ∂Ω× [0, T ), i.e., u(x′, ρ(x′)) ≡ ε for ∀t ∈ [0, T ), at the origin we

have

uα + unBαβxβ = 0, uαβ + unραβ = 0, ∀t ∈ [0, T ) and α, β < n.

Consequently,

(6.17) |uαβ(0, t)| ≤ C|Du(0, t)|, ∀t ∈ [0, T ) and α, β < n,

where C depends only on the maximal (Euclidean principal) curvature of ∂Ω. Fol-

lowing [CNS84] let Tα = ∂α +
∑
β<nBαβ(xβ∂n − xn∂β), then for fixed α < n, we

have

(6.18) |Tαu| ≤ C1|x|2, on {∂Ω ∩Bε(0)} × [0, T ),

(6.19) |Tαu| ≤ C1, in {Ω ∩Bε(0)} × [0, T ),

where C1 is independent of ε and T. Moreover by Lemma 6.4

(6.20) LTαu = 0.

Therefore

(6.21)

|L(Tαu)| = |L(Tαu)−GuTαu|

= |GuTαu| ≤ C1|Gu|

≤ C2

u
(
∑

F ii + F )

≤ C2

u

∑
F ii in {Ω ∩Bε(0)} × [0, T ).

Note that the last inequality comes from equation (1.11), Corollary 4.2 and Remark

4.3. Hence C2 is some constant only depending on T. By equation (6.4), (6.10) and

Lemma 2.1 in [GS08]

(6.22)

|L(|x|2)| =
∣∣Gkl∂k∂l(|x|2) +Gs∂s(|x|2)

∣∣
= |2

∑
Gkk + 2

∑
xsG

s|

≤ C3(u
∑

F ii + ε|Gs|) ≤ C3u
∑

F ii in {Ω ∩Bε(0)} × [0, T ),

for the same reason as before we know that C3 only depends on T as well.

Now consider function

Φ = A
(

1− ε

u

)
+B|x|2 ± Tαu.

First choose B ≥ C1

ε2 , then we have Φ ≥ 0 on {∂(Ω ∩Bε(0))} × [0, T ).
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Next consider Φ on (Ω ∩ Bδ(0)) × {0}, where δ > ε > 0 is small enough. By

using Taylor’s theorem we have

Φ = A

(
1− ε

u0

)
+B|x|2 ± Tαu0

≥ A
(

1− ε

ε+ a1xn

)
+B|x|2 − b1xn − b2|x|2

≥
(

Aa1

1 + a1
− b1

)
xn + (B − b2) |x|2,

where u0 ≥ ε + a1xn, |Tαu0| ≤ b1xn + b2|x|2 in Ω ∩ Bδ(0) and a1, b1, b2 > 0.

(The reason of the existence of a1 can be found in section 3 of [LX10] while the

existence of bi, i = 1, 2 is trivial. ) Hence we conclude that when A ≥ b1(1+a1)
a1

and

B ≥ max{C1

ε2 , b2}, Φ ≥ 0 on {∂(Ω ∩Bε(0))× [0, T )} ∩ {(Ω ∩Bε(0))× {0}} .
Moreover, by (1.11),(6.21),(6.21) and Lemma 6.3

(6.23)

L(Φ) = AL
(

1− ε

u

)
+BL(|x|2)± L(Tαu)

≥ Aε(1− σ)

u2w
− C3Bu−

C2

u
.

Choosing A� C1C3+C2

1−σ such that LΦ ≥ 0 in {Ω ∩Bε} × [0, T ), which implies that

Φ ≥ 0 in {Ω ∩ Bε} × [0, T ). Since Φ(0, t) = 0, we have Φn(0, t) ≥ 0, for any fixed

t ∈ [0, T ). Thus

(6.24) A
( ε

u2
un

)
± (Tαu)n ≥ 0

which implies, for any fixed t ∈ [0, T ),

(6.25) |uαn(0, t)| ≤ Aun(0, t)

u(0, t)
.

Since when t = 0, unn(0, 0) is given we only care about the case when t > 0.

By Theorem 3.1, we know that F ≡ σ, on ∂Ω× (0, T ). Therefore we can establish

|unn(0, t)|, ∀t ∈ (0, T ) in the same way as [GSZ09]. For completeness we include

the argument here.

For a fixed t ∈ (0, T ), we may assume (uαβ(0, t))1≤α,β<n to be diagonal. Then

at the point (0, t)

A[u] =
1

w


1 + uu11 0 · · · uu1n

w
0 1 + uu22 · · · uu2n

w
...

...
. . .

...
uun1

w
uun2

w · · · 1 + uunn
w2


By lemma 1.2 in [CNS85], if εunn(0, t) is very large, the eigenvalues λ1, · · · , λn

of A[u] are given by

(6.26)

λα =
1

w
(1 + εuαα(0, t)) + o(1), α < n

λn =
εunn(0, t)

w3

(
1 +O

(
1

εunn(0, t)

))
.
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If εunn ≥ R where R is a uniform constant, then by (1.8), (1.9) and Lemma 5.1 we

have

σ =
1

w
F (wA[u])(0, t) ≥ (σ − Cε)

(
1 +

ε0
2

)
> σ

which is a contradiction. Therefore

|unn(0, t)| ≤ R

ε
and the proof is completed. �

7. C2 global estimates

Let Σ(t) = {(x, u(x, t)) | x ∈ Ω, t ∈ [0, T )} be the flow surfaces in Hn+1 where

u(x, t) satisfies ut = uw(F − σ). For a fixed point x0 ∈ Σ(t0), 0 < t0 < T we

choose a local orthonormal frame τ1, · · · , τn around x0 such that hij(x0) = κiδij ,

where κ1, · · · , κn are the hyperbolic principal curvatures of Σ(t0) at x0. The cal-

culations below are done at x0. In this section, for convenience we shall write

vij = ∇ijv, hijk = ∇khij , hijkl = ∇lkhij , etc.

Theorem 7.1. Let Σ(t) = {(x, u(x, t)) | x ∈ Ω, t ∈ [0, T )} be the flow surfaces in

Hn+1 where u(x, t) satisfies AMGCF equation (1.19) and

νn+1 ≥ 2a > 0 on Σ(t), ∀t ∈ [0, T ).

For x ∈ Σ(t), let κmax(x) be the largest principal curvature of Σ(t) at x. Then

(7.1) max
ΩT

κmax

νn+1 − a
≤ max

{
4

a3
,max
∂ΩT

κmax

νn+1 − a

}
,

where ΩT = Ω× [0, T ).

Since the proof of this Theorem is very complicated, we shall divide it into several

parts.

To begin with, we denote

(7.2) M0 = max
ΩT

κmax(x)

νn+1 − a
.

Without loss of generality we may assume M0 > 0 is attained at an interior point

x0 ∈ Σ(t0), t0 ∈ (0, T ). We may also assume κ1 = κmax(x0). Thus we say at x0,
h11

νn+1−a achieves its local maximum. Hence,

(7.3)
h11i

h11
− ∇iν

n+1

νn+1 − a
= 0,

(7.4)
h11ii

h11
− ∇iiν

n+1

νn+1 − a
≤ 0.

Lemma 7.2. At x0 ∈ Σ(t0), t0 ∈ (0, T ),

(7.5)

∂

∂t
h11 = ∇11F − (F − σ)κ2

1 + κ1ν
n+1(F − σ)

− κ1

νn+1
(F − σ) + (F − σ)(νn+1)2 − 2(F − σ).
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Proof. By Lemma 3.4 equation (3.8) and g̃ij = u2δij we have,

(7.6)

∂

∂t
h11 =

1

u
{∇̃11[(F − σ)u]− u(F − σ)h̃k1 h̃k1} −

h̃11

u
w(F − σ)

− [u(F − σ)]ku
k − 2(F − σ)νn+1

u
h̃11 − 2(F − σ).

Recall equation (2.6) we get

∇̃11[(F − σ)u] = ∇11[(F − σ)u]− 1

u

{
2u1[(F − σ)u]1 − uk[(F − σ)u]ku

2
}

= u∇11F + (F − σ)∇11u+ 2F1u1 −
2

u

{
uu1F1 + u2

1(F − σ)
}

+ uuk[(F − σ)u]k

= u∇11F + (F − σ)∇11u−
2u2

1(F − σ)

u
+ uk[(F − σ)u]ku,

inserting this into (7.6)

(7.7)

∂

∂t
h11 =

1

u

{
u∇11F + (F − σ)∇11u−

2u2
1(F − σ)

u
+ uk[(F − σ)u]ku

}
− (F − σ)h̃k1 h̃k1 −

h̃11

u
w(F − σ)− [u(F − σ)]ku

k

− 2(F − σ)νn+1

u
h̃11 − 2(F − σ)

= ∇11F +
(F − σ)

u
∇11u−

2u2
1(F − σ)

u2
− (F − σ)h̃k1 h̃k1

− h̃11

u
w(F − σ)− 2(F − σ)νn+1

u
h̃11 − 2(F − σ).

Note that,

∇11u = ∇̃11u+
2u2

1

u
− u|∇̃u|2,

h̃11

u
= h11 − νn+1,

h̃k1 h̃k1 =
1

u2
h̃2

1k =
1

u2
(uh1k − uνn+1δ1k)2 = (h11 − νn+1)2.
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So we have,

(7.8)

∂

∂t
h11 = ∇11F +

(F − σ)

u

(
h̃11ν

n+1 +
2u2

1

u
− u|∇̃u|2

)
− 2u2

1

u2
(F − σ)− (F − σ)(h11 − νn+1)2 − (h11 − νn+1)w(F − σ)

− 2(F − σ)νn+1(h11 − νn+1)− 2(F − σ)

= ∇11F + (F − σ)νn+1(h11 − νn+1)− (F − σ)(1− (νn+1)2)

− (F − σ)(h2
11 − 2h11ν

n+1 + (νn+1)2)− (h11 − νn+1)w(F − σ)

− 2(F − σ)νn+1(h11 − νn+1)− 2(F − σ)

= ∇11F − (F − σ)− (F − σ)κ2
1 + 2κ1ν

n+1(F − σ)

− κ1

νn+1
(F − σ) + (F − σ)− (F − σ)νn+1(κ1 − νn+1)− 2(F − σ)

= ∇11F − (F − σ)κ2
1 + κ1ν

n+1(F − σ)− κ1

νn+1
(F − σ)

+ (F − σ)(νn+1)2 − 2(F − σ).

�

proof of Theorem 7.1. Now we denote ϕ = h11

νn+1−a , where νn+1 ≥ 2a > 0 on ΩT .

Then at x0 ∈ Σ(t0), we have

(7.9) ∇iϕ =
h11i

νn+1 − a
− h11ν

n+1
i

(νn+1 − a)2
= 0

(7.10) ∇iiϕ =
h11ii

νn+1 − a
− h11∇iiνn+1

(νn+1 − a)2
≤ 0.

Using Lemma 7.2 and equation (3.5) in Lemma 3.3 we get

(7.11)

∂

∂t
ϕ =

ḣ11

νn+1 − a
− h11ν̇

n+1

(νn+1 − a)2

=
1

νn+1 − a
{
F iihii11 + F ij,rshij1hrs1 − (F − σ)κ2

1

+κ1ν
n+1(F − σ)− κ1

νn+1
(F − σ) + (F − σ)(νn+1)2 − 2(F − σ)

}
+

h11

(νn+1 − a)2
uk[(F − σ)u]k.

By equation (2.6) and (5.8)

∇iiνn+1 = ∇̃iiνn+1 +
1

u

(
2uiν

n+1
i − ukνn+1

k g̃ii
)

= −g̃kl
(
νn+1h̃ilh̃ki + ul∇̃kh̃ii

)
+

2

u
uiν

n+1
i − uukνn+1

k δii,
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we obtain

F ii∇iiνn+1 = −νn+1F iig̃klh̃ilh̃ki − F iiuk∇̃kh̃ii

+
2

u
F iiuiν

n+1
i − uukνn+1

k

∑
fi

= −νn+1
(∑

fiκ
2
i − 2νn+1F + (νn+1)2

∑
fi

)
− F iiuk∇̃kh̃ii

+
2

u
F iiuiν

n+1
i − uukνn+1

k

∑
fi.

What’s more, by the Codazzi and Gauss equations we have

hii11 − h11ii = (κiκ1 − 1)(κi − κ1) = κ2
iκ1 − κiκ2

1 − κi + κ1,

multiplying by F ii and sum over i,

(7.12)
∑

F ii(hii11 − h11ii) = κ1

∑
fiκ

2
i − κ2

1F − F + κ1

∑
fi.

Finally we get

(7.13)

∂

∂t
ϕ− F ii∇iiϕ =

1

νn+1 − a

{
κ1

∑
fiκ

2
i − κ2

1F − F

+ κ1

∑
fi + F ij,rshij1hrs1 − (F − σ)κ2

1 + κ1ν
n+1(F − σ)

− κ1

νn+1
(F − σ) + (F − σ)(νn+1)2 − 2(F − σ)

}
+

κ1

(νn+1 − a)2

{
uFku

k + |∇̃u|2(F − σ) + F ii∇iiνn+1
}

=
1

νn+1 − a

{
κ1

∑
fiκ

2
i − κ2

1F − F + κ1

∑
fi

+ F ij,rshij1hrs1 − (F − σ)κ2
1 + κ1ν

n+1(F − σ)

− κ1

νn+1
(F − σ) + (F − σ)(νn+1)2 − 2(F − σ)

}
+

κ1

(νn+1 − a)2

{
u

(
|∇̃u|2

u
F − |∇̃u|

2

u
νn+1

∑
fi

)
+ |∇̃u|2(F − σ)− νn+1

[∑
fiκ

2
i − 2νn+1F + (νn+1)2

∑
fi

]
+

2

u

∑
F iiuiν

n+1
i

}
,

where we have used equation (5.12). Hence at x0 ∈ Σ(t0) we have

(7.14)

0 ≤ κ1fiκ
2
i − κ2

1F − F + κ1

∑
fi + F ij,rshij1hrs1

− (F − σ)κ2
1 + κ1ν

n+1(F − σ)− κ1

νn+1
(F − σ)

+ (F − σ)(νn+1)2 − 2(F − σ) +
κ1

νn+1 − a

{
|∇̃u|2F

− |∇̃u|2νn+1
∑

fi + |∇̃u|2(F − σ)− νn+1
[∑

fiκ
2
i − 2νn+1F

+(νn+1)2
∑

fi

]
+

2

u

∑
F iiuiν

n+1
i

}
,
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which implies

(7.15)

0 ≤
(
−1− κ2

1 + κ1
1 + (νn+1)2

νn+1 − a

)
F + F ij,rshij1hrs1

+

(
κ1 −

κ1ν
n+1

νn+1 − a

)
(
∑

fi +
∑

fiκ
2
i ) +

2κ1

νn+1 − a
∑

fi
u2
i

u2
(νn+1 − κi)

+ (F − σ)κ1

(
−κ1 + νn+1 − 1

νn+1
+

1− (νn+1)2

νn+1 − a

)
− (F − σ).

Next we use an inequality due to Andrews [A94] and Gerhardt [G96] which states

(7.16) − F ij,klhij1hkl1 ≥ 2
∑
i≥2

fi − f1

κ1 − κi
h2
i11.

Meanwhile at x0 ∈ Σ(t0), we obtain from equation (5.7) and (7.9)

(7.17) h11i =
κ1

νn+1 − a
ui
u

(νn+1 − κi).

Inserting into (7.16) we derive

(7.18) F ij,rshij1hrs1 ≤ 2

(
κ1

νn+1 − a

)2∑
i≥2

f1 − fi
κ1 − κi

u2
i

u2
(ki − νn+1)2.

Moreover we may write

(7.19)
∑

fi +
∑

fiκ
2
i = (1− (νn+1)2)

∑
fi +

∑
(κi − νn+1)2fi + 2Fνn+1.

Combining equation (7.15), (7.18) and (7.19) gives

(7.20)

0 ≤
(
−1− κ2

1 +
1 + (νn+1)2

νn+1 − a
κ1

)
F +

2κ1

νn+1 − a
∑

fi
u2
i

u2
(νn+1 − κi)

− aκ1

νn+1 − a

(
(1− (νn+1)2)

∑
fi +

∑
(κi − νn+1)2fi + 2Fνn+1

)
− 2

(
κ1

νn+1 − a

)2∑
i≥2

fi − f1

κ1 − κi
u2
i

u2
(κi − νn+1)2

+ (F − σ)κ1

(
−κ1 + νn+1 − 1

νn+1
+

1− (νn+1)2

νn+1 − a

)
− (F − σ).

Note that (assuming κ1 ≥ 2
a ) all terms on the right hand side are negative except

possibly the ones in the sum involving (νn+1 − κi) and only if κi < νn+1.

Therefore define

I =
{
i : κi − νn+1 ≤ −θκ1

}
,

J =
{
i : −θκ1 < κi − νn+1 < 0, fi < θ−1f1

}
,

L =
{
i : −θκ1 < κi − νn+1 < 0, fi ≥ θ−1f1

}
,
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where θ ∈ (0, 1) is to be chosen later. We get

(7.21)

−1

νn+1 − a
∑
i∈I

(κi − νn+1)2fi

≤ θκ1

νn+1 − a
∑
i∈I

(κi − νn+1)fi

≤ θκ1

νn+1 − a
∑
i∈I

(κi − νn+1)fi
u2
i

u2
,

(7.22)
∑
i∈J

(νn+1 − κi)fi
u2
i

u2
≤ κ1f1.

Finally

(7.23)

−2κ2
1

(νn+1 − a)2

∑
i∈L

fi − f1

κ1 − κi
u2
i

u2
(κi − νn+1)2

≤ −2κ2
1

(νn+1 − a)2

∑
i∈L

(1− θ)fi
(1 + θ)κ1

(κi − νn+1)2u
2
i

u2

=
2κ1

νn+1 − a
∑
i∈L

fi
u2
i

u2
(κi − νn+1)

+
4θ

1 + θ

κ1

(νn+1 − a)2

∑
i∈L

(κi − νn+1)2fi
u2
i

u2

− 2κ1

(νn+1 − a)2

∑
i∈L

fi
u2
i

u2
(κ2
i − (νn+1 + a)κi + aνn+1)

≤ 2κ1

νn+1 − a
∑
i∈L

fi
u2
i

u2
(κi − νn+1)

+
4θ

1 + θ

κ1

(νn+1 − a)2

∑
i∈L

(κi − νn+1)2fi
u2
i

u2
+

6κ1

a
F.

In deriving the last inequality in (7.23) we have used that κi > 0 for each i. Now

fix θ so that 8θ
1+θ = a2, so we get the right hand side of (7.20) is strictly negative

when provided κ1 >
4
a2 which complete the proof. �

Let us assume that the flow exists in [0, T ) with 0 < T <∞ such that the norm

of u2(t),∀t ∈ [0, T ) is uniformly bounded in C2(Ω). Due to the concavity of F,

we can apply the Evans-Krylov theorem [CC95] to get uniform C2+α(Ω) estimates

which in turn will lead to C2+α, 2+α2 (Ω × (0, T )) estimates. And the long time

existence follows by proving a priori estimates in any compact time interval for the

corresponding norms.

In order to prove equation (1.16) in Theorem 1.2, according to Theorem 7.1 , we

only need to find a uniform bound C which is independent of T for u|D2u| on the

boundary ∂Ω× [0,∞).
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Following Lemma 3.4 in [LX10], we obtain that, for any fixed x ∈ Ωε := {x ∈
Ω, d(x, ∂Ω) ≤ ε},

u(x, t)− u(x, 0) ≤
∫ ∞

0

uw(F − σ)dt = u(x, t∗)

∫ ∞
0

w(F − σ)dt ≤ Cε,

which implies that, ∫ ∞
0

w(F − σ)dt ≤ C in Ωε.

Therefore, by Lemma 4.1 and Corollary 5.4 we conclude that when 0 < ε ≤ ε0,

there exists a t̃ such that for any t > t̃, we have 0 ≤ F − σ < δ in Ωε, where t̃

only depends on δ. Combining with Theorem 6.1 and Theorem 7.1 gives a uniform

bound for u|D2u|.

8. Convergence to a stationary solution

Let us go back to our original problem (1.13), which is a scalar parabolic differ-

ential equation defined on the cylinder ΩT = Ω × [0, T ) with initial value u(0) =

u0 ∈ C∞(Ω) ∩ C2(Ω) and u0|∂Ω = 0. In view of the a priori estimates, which we

have estimated in the preceding sections, we know that

(8.1) u|D2u| ≤ C,

(8.2)
√

1 + |Du|2 ≤ C,

and hence

(8.3) F is uniformly elliptic in u.

Moreover, since F is concave, we have uniform C2+α(Ω) estimates for u2(t), ∀t ≥ 0.

Thus the flow exists for all t ∈ [0,∞).

By integrating equation (1.12) with respect to t, we get

(8.4) u(x, t∗)− u(x, 0) =

∫ t∗

0

(F − σ)uwdt.

In particular,

(8.5)

∫ ∞
0

(F − σ)uwdt <∞ ∀x ∈ Ω.

Hence for any x ∈ Ω there exists a sequence tk →∞ such that (F −σ)u(x, tk)→ 0.

On the other hand, u(x, ·) is monotone increasing and bounded (see Lemma 3.3

of [LX10]). Therefore

(8.6) lim
t→∞

u(x, t) = ũ(x)

exists, and is of class C∞(Ω) ∩ C1(Ω). Moreover, ũ(x) is a stationary solution of

our problem, i.e., F
(

Σ̃
)

= σ, where Σ̃ = {(x, ũ(x)) | x ∈ Ω} .
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Remark 8.1. Notice that without assumption (1.18) we may not have a unique

stationary solution for equation (1.1), however due to our setting for the initial

surface and the monotonicity of the height function u(x, ·), we can see that the flow

always converges uniformly to a unique stationary solution.

9. Uniqueness and foliation

Theorem 9.1. Suppose f satisfies (1.3)-(1.9), in addition,

(9.1)
∑
i

fi >
∑
i

λ2
i fi in K ∩ {0 < f < 1}.

Let Σi = {(x, ui(x) | x ∈ Ω}, i = 1, 2, be two graphs such that

(9.2) sup
x∈Ω

f(κ[Σ1]) < f(κ[Σ2]),

where Σi i = 1, 2 are strictly locally convex graphs (oriented up) in Hn+1 over

Ω ⊂ Rn with the same boundary Γε in the horosphere Pε = {xn+1 = ε} or with the

same asymptotic boundary Γ = ∂Ω. Then there holds

(9.3) u1 > u2, in Ω.

Proof. We first observe that the weaker conclusion

(9.4) u1 ≥ u2

is as good as the strict inequality (9.3), in view of the maximum principle.

Hence prove by contradiction, assume (9.4) is not valid, in another word,

(9.5) E(u2) = {x ∈ Ω : u2(x) > u1(x)} 6= ∅.

Then there exists point pi ∈ Σi such that

0 < d0 = d (Σ1,Σ2) = d(p1, p2) = sup
p∈Σ1

{ inf
q∈Σ2∩I+(Σ1)

d(p, q) : (p, q) ∈ Σ1 × Σ2},

where d is the distance function in Rn+1, and I+(Σ1) = {(x, xn+1) : xn+1 ≥ u1(x)}.
Let χ be the maximal geodesic from Σ1 to Σ2 realizing this distance with end

point p1 and p2, and parametrized by arc length. Denote by d̄ the distance function

to Σ1,

d̄(q) = inf
p∈Σ1

d(p, q).

Since χ is maximal, Υ = {χ(t) : 0 ≤ t < d0} contains no focal points of Σ1,

hence there exists an open neighborhood U = U(Υ) such that d̄ is smooth in U,

and U is a tubular neighborhood of Σ1, and hence covered by an associated normal

Gaussian coordinates system (xα) satisfying xn+1 = d̄ in {xn+1 > 0}.
Now Σ1 is the level set {d̄ = 0}, and the level set

W(s) = {x ∈ U : d̄ = s}
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are smooth hypersurfaces. Since the principle curvatures of W(t) at points along

the normal geodesic emanating from any point of Σ2 (say near p2) are given by ode

κ′i(s) = κ2
i − 1.

hence by (9.1) we have

(9.6)
d

ds
f(κ)(s) =

∑
κ2
i fi −

∑
fi < 0 in K ∩ {0 < f < 1}.

Next, in the same way, we consider a tubular neighborhood N of Σ2 with corre-

sponding normal Gaussian coordinates (xα). The lever sets

W̃(r) = {xn+1 = r}, −ε < r < 0,

lies below Σ2 = W̃(0) and are smooth for small ε.

Since the geodesic χ is perpendicular to Σ2, it’s also perpendicular to W̃(r) and

the length of the geodesic segment of χ is −r. Hence we deduce

d
(

Σ1, W̃(r)
)

= d0 + r.

Further more, for fixed r, the hypersurface W̃(r) touches W(d0+r) at pr = χ(d0+r)

from below. The maximum principle then implies

f |W̃(r)(pr) ≤ f |W(d0+r)(pr)

On the other hand, W̃(r) converges to Σ2. It follows from (9.6) that

f(κ[Σ2])(χ(d0)) ≤ f(κ[Σ1])(χ(0)),

which is a contradiction to (9.2). �
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